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Abstract

Many approaches to sound change attempt to derive common patterns of sound
change from universal pressures, such as physiological and psychoacoustic
constraints on speech. Accounts of this type face the following problem: it is not clear
why universal pressures only lead to changes in some languages, but not in others.
This issue is part of the so-called actuation problem. The question of sound change
actuation is usually addressed by referring to social factors and individual differences
that may inhibit or encourage the spread of a sound change in a community. While
this paper acknowledges the importance of such explanations, it argues that some
aspects of sound change actuation can also be approached by looking at structural
factors that are typically associated with the initiation of sound change. | use
computational simulations to investigate the evolution of sound systems under
multiple pressures. The simulated sound systems evolve towards stable states in
adaptive landscapes defined partly by universal pressures (e.g. phonetic biases and
contrast maintenance) and partly by language-specific factors (e.g. the relative
frequency of specific phonetic environments). The former create common pathways
of change, while the latter lead to cross-linguistic variation. As it will be shown, this
approach can account both for stability and change. The simulations also
demonstrate how language-specific factors can be used to make predictions about

the stable states towards which sound systems converge.
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1. Introduction

The main goal of this paper is to contribute to our understanding of how sound
changes are constrained, and, specifically, why a given change may be more likely to
take place in certain languages and varieties than in others. This issue is often
referred to as the actuation problem (Weinreich et al., 1968; Baker et al. 2011). Many
accounts of sound change identify two hurdles that need to be overcome for a sound
change to take place. First, some speakers need to produce speech that deviates
from the conventional speech targets of their community. Their innovative speech
patterns then need to spread to a substantial number of other speakers within their
speech community. These steps are usually referred to as the initiation and the
spread of sound change (cf. Milroy and Milroy, 1985:347-348; Ohala, 1993:268;
Janda and Joseph, 2003:17-18; Stevens and Harrington, 2014:4). When talking
about constraints on sound change, the notions of initiation and spread are often
used in rather different ways. Approaches to sound change that focus on initiation
(e.g. Ohala, 1981, 1993; Blevins, 2004; Pierrehumbert, 2001) typically look at how
universal properties of speech production and perception constrain sound change.
One important finding that has emerged from these approaches is that cross-
linguistically common sound changes can almost always be traced to universal
phonetic biases (Blevins, 2004:8-10). Research on the spread of sound change
(Weinreich et al., 1968; Milroy, 1992; Labov, 2001) tends to have a different
orientation: while it also incorporates some cross-linguistic elements, it puts a
stronger emphasis on social patterns that are specific to the community under
investigation. These patterns are seen as the main determinants of the paths along
which innovations spread in a community. For instance, Labov’s (1963) classic study
of the English variety spoken on Martha’s Vineyard established that the degree of
centralisation of /ay/ and /aw/ (an ongoing sound change on the island) correlated
strongly with speakers’ attitudes towards life on the island, as well as a range of other
factors including age, gender and occupation. This differential focus on cross-
linguistic versus language-specific patterns has led some researchers to posit that
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actuation puzzle, since it can only be solved by looking at the spread of sound
change (e.g. Ohala, 1993:268).

The view of sound change presented in this paper fully acknowledges the
crucial role of social factors and population dynamics in the actuation of sound
change. However, | will argue that factors traditionally associated with the initiation of
sound change should also form an important part of research into the actuation
problem. These include articulatory and perceptual pressures (e.g. Paul, 1880; Ohala
1981; Blevins, 2004; Garrett and Johnson, 2013), a tendency towards the
maintenance of lexical contrasts (e.g. Martinet, 1952; Campbell, 1975; Antilla, 1989;
Labov, 1994; Wedel, 2006), innate learning biases (e.g. Chomsky and Halle 1968;
Saffran, 2002; Moreton, 2008) and a range of other factors. In this paper, | refer to
these as universal pressures on sound change, since they follow from general
properties of human cognition and the human speech apparatus. It has been argued
that such pressures cannot provide insight into the actuation problem precisely
because of their universality: how could they account for cross-linguistic differences if
they are present in every speaker (see e.g. Weinreich et al., 1968:111-112)?
According to this argument, accounts of sound change actuation based on universal
pressures cannot explain ‘why language fails to change’ (Weinreich et al., 1968:112).
| will show that this problem arises only when we look at sound changes in a vacuum,
that is, changes to a single sound category under the influence of a single universal
pressure. When we consider sound systems affected by multiple interacting
pressures, we get more varied and realistic predictions, which can help us
understand certain types of cross-linguistic differences.

To illustrate the problems outlined above, consider the two universal
pressures that are the focus of this paper: phonetic biases and contrast maintenance.
Phonetic biases are physiological and psychoacoustic constraints on speech.
Contrast maintenance refers to a tendency for contrastive sound categories to
remain well separated in phonetic space. Many scholars view these pressures as
having ontologically different effects acting in opposite directions. Thus, phonetic
biases are claimed to enable sound change by creating the variation that serves as
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maintenance inhibits sound change when it would endanger phonological oppositions
(see e.g. Campbell, 1975; Antilla, 1989; Blevins and Wedel, 2009). While the precise
effects of these two universal pressures may be somewhat more complicated (e.g.
contrast maintenance itself may act as an active force that creates more contrastive
variants, instead of simply inhibiting ongoing changes), it is clear that they can
interact with each other. However, the details of this interaction remain unclear. How
can we predict which pressure gains the upper hand in a particular language, leading
to a particular type of change (or the absence of change)? This is a clear
manifestation of the actuation problem referred to above.

This paper will suggest that the actuation problem and the interaction
between different universal pressures on sound change are closely related. If we
understand how the competition among opposing pressures is resolved, we also gain
at least a partial answer to the question of why certain changes can go ahead while
others are inhibited. | will argue that the interaction among universal pressures is not
simply either-or. Their relative strengths in a given sound system are determined by
language-specific factors. For instance, the effects of phonetic biases and contrast
maintenance are mediated by lexical factors such as functional load and the relative
frequency with which a specific category occurs in a biasing environment (henceforth
bias proportion; these factors and their roles in sound change will be discussed in
more detail below). We can view these language-specific factors as the context in
which universal pressures apply. Sometimes, this context will be highly conducive for
a given pressure, leading to a strong and visible effect. Other times, this context will
not provide many opportunities for the universal pressure to apply, and it will not
produce a strong effect. Since these factors are dependent upon specific properties
of a given language at a given time, | refer to them as contingent factors.

As it will be shown, universal pressures and contingent factors define
complex adaptive landscapes, which determine the possible pathways followed by
sound systems during their evolution. If a particular sound system lies in an unstable
part of the adaptive landscape, it will tend to move away from it. Conversely, if it is
located in a stable part of the adaptive landscape, it will remain there. Since the
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stable states will be cross-linguistically more frequent than others. However, cross-
linguistic variation in contingent factors will dilute the strength of these universal
tendencies.

An important part of the argument summarised above is the claim that the
predictions made on the basis of universal pressures and contingent factors are
primarily about the properties of stable sound systems, and only indirectly about the
probability of sound change itself. Although this may seem like a subtle difference, it
has far-reaching consequences. First, an account that predicts stable states clearly
avoids the overprediction problem stated by Weinreich et al. (1968) and Baker et al.
(2013): universal pressures on sound change do not always lead to change, since
the systems seek equilibria defined by multiple competing pressures. Once such an
equilibrium has been found, the system will tend to stay there even if it is suboptimal
with respect to some of the pressures (e.g. they satisfy one phonetic bias but not a
different one). Second, the predictions of these models relate to sound systems at
specific points in time and their testing does not necessarily require longitudinal data.
This makes it much easier to evaluate their validity. Third, stable states allow us to
investigate the interactions among multiple pressures in a straightforward manner,
which is more difficult to do in a model looking at the likelihood of changes.

This paper uses computer simulations to show how the argument
summarised above derives from a popular model of sound change relying on
plausible assumptions about speech production and perception (Pierrehumbert,
2001; Wedel, 2006; Stanford and Kenny, 2013; Garrett and Johnson, 2013). The
simulations will be used clarify the roles of universal pressures and contingent factors
in sound change and illustrate the notions of adaptive landscapes and stable states
in the context of sound systems. Moreover, they exemplify the predictions that this
type of model generates. In order to make the discussion easier to follow, the
simulations are based on a specific phenomenon: the fronting of /u/ in the context of
coronal consonants (cf. Harrington et al. 2008, 2011). However, it is important to
emphasise that the goal of these simulations is not to investigate a particular
phenomenon, but to make the main argument of the paper more concrete. Wedel

(2011:135) describes this type of simulation as ‘an existence proof that a given



structure can arise through interactions between some defined set of system
properties, and/or [...] a supporting illustration for verbal or analytic arguments.’
Therefore, in the discussion of the simulation results, the main focus will be on the
broad dynamics of the simulated systems. | do not test the empirical validity of the
specific predictions of the model with respect to /u/-fronting (although | believe a
research programme focusing on these predictions would certainly be worth
pursuing).

The main argument of the paper is delivered as follows. In Section 2, |
provide an overview of existing approaches to sound change and the actuation
problem, a brief summary of computational approaches to sound change and some
justification for the main assumptions of the model of speech production and
perception used in the simulations. Then, | present a technical description of the
modelling architecture used in this paper (Section 3). Section 4 describes the results
of three different sets of simulations: one focusing on the effects of phonetic biases,
another one focusing on contrast maintenance, and the last one looking at the
interaction between these two pressures. As it will be shown, all of these simulations
lead to stable states. In Section 5, | discuss the implications of these findings. | also
show that while the model predicts stable states, this does not mean that sound
change will never occur again once a stable state has been reached. In other words,
addressing the overprediction issue referred above does not necessarily create an

underprediction issue. Finally, Section 6 presents the conclusions of the paper.

2. Background

2.1 Sound change and the actuation problem

This section provides a brief overview of previous research on sound change and the
actuation problem. In the first half of this overview, | focus on approaches which seek
to link sound change to one specific type of universal pressure, namely phonetic
biases. In the second half, | look at recent attempts to reconcile these approaches

with the actuation problem. This review of the literature (based partly on Stevens and



Harrington, 2014) will help to clarify where the current approach differs from previous
ones and where its main contributions lie.

For the purposes of the following discussion, | adopt the following three-step
breakdown of sound change based on Lindblom et al. (1995:16), which is slightly
more detailed than the two-step breakdown discussed in the introduction (i.e.

initiation vs. spread):

(1) a. generation of innovative variants;
b. (possibly erroneous) transmission of variants from one speaker to another;

c. spread of the variant across the speech community.

This scheme is adopted purely for convenience. As it will be shown, different
approaches to sound change and the actuation problem emphasise different parts of
(1). Therefore, the steps in (1) can be used to compare these approaches in a single
conceptual framework even when their underlying assumptions are very different. |
do not mean to suggest that an empirically adequate model of sound change
necessarily has to distinguish between or account for all these steps.

Since the approaches discussed in this section all rely heavily on the notion of
phonetic biases, it will be useful to provide a definition. In this paper, the term
phonetic bias is used to refer to low-level, universal properties of speech production
and perception. One example is vowel undershoot: speakers often fail to reach the
phonetic target for vowels in prosodically weak positions (e.g. in unstressed syllables;
cf. Lindblom, 1963; Szeredi, 2010), resulting in slightly less peripheral productions.
This tendency arguably originates in simple physical properties of the articulators
(such as their speed), which have little to do with the speakers’ intentions or learnt
phonetic patterns (which is not to say that the resulting patterns do not have learnt
aspects). Since such physical properties are typically shared by most humans
(perhaps with small variations), the effects of vowel undershoot are universally
observable, although these effects may often be very small (Gendrot and Adda-
Decker, 2007). Other examples of universal phonetic biases include aerodynamic

constraints, various patterns of coarticulation and many more examples of phonetic



‘weakening’ or ‘lenition’ (see Garrett and Johnson, 2013 for a comprehesive
discussion of phonetic biases).

The model of sound change originally proposed by Ohala (1981, 1989, 1993)
and further developed by Blevins (2004, 2006) focuses explicitly on steps (1a-b) to
the exclusion of step (1c) (see e.g. Ohala, 1993:238; Blevins, 2004:19). The starting
point for this model is the observation that speech variation due to phonetic biases
(cf. step (1a)) is a ubiquitous property of human languages, but such variation in itself
does not constitute sound change. This is because (i) this type of variation is
unintentional on the part of the speakers, and therefore arguably not learnt and (ii)
listeners can typically compensate for the influence of phonetic biases in their
perception (Ohala, 1993:244-245). For instance, the acoustic quality of the sound [s]
may shift towards [f] when followed by a rounded [u]. However, listeners can
compensate for this effect by shifting their perceptual boundaries between [s] and [f]
and successfully recognise the intended sound as [s] (Mann and Repp, 1980). In
Ohala’s and Blevins’ models, this compensation may occasionally fail to take place
(or it may overapply), leading to ‘mini sound changes’ (Ohala, 1993:243). This
corresponds to step (1b). Mini sound changes can, in turn, be transformed into real
sound changes if an innovative variant that comes by through misperception spreads
across the community (1c). According to Ohala (1993:244), ‘it is probably a rare thing
for one speaker’s innovative pronunciation to spread via imitation to sizable numbers
of other speakers’, which explains why mini sound changes rarely lead to community-
wide sound changes. Thus, although this model focuses on steps (1a) and (1b), it
invokes step (1c¢) to explain why only a small set of universal pressures lead to sound
changes in a given language.

Lindblom et al. (1995) propose a slightly different model of sound change,
which incorporates all three of the steps shown in (1). According to Lindblom (1990),
speakers can manipulate the phonetic characteristics of their utterances to achieve
different degrees of hypo and hyperarticulation, which can result in a wide range of
surface variants. For instance, hypoarticulated speech will contain more centralised
vowel realisations, while hyperarticulated speech will contain more peripheral vowel

realisations. As this example shows, phonetic biases in production play a central role



in this account as well as in Ohala's. This type of variation corresponds to step (1a).
Lindblom et al. (1995) argue that listeners are typically in the ‘what’-mode of
perception, focusing on the contents of the speaker’s utterances and abstracting
away from the effects of shifts along the hypo and hyperarticulation continuum
(potentially using mechanisms that are similar to the ones invoked by Ohala and
Blevins). However, listeners may occasionally shift their mode of perception to the
‘how’-mode, allowing them to store ‘raw’ phonetic material without controlling for
contextual variation. In such a scenario, the innovative form may be transmitted from
one speaker to another, which corresponds to step (1b). As these innovative forms
are transmitted across speakers, they submit them to ‘Articulatory, Perceptual, Social
and Systemic Evaluation’; this evaluation (similarly to variation in speech production)
is also ‘structured, by and large, along the H&H dimension’ (Lindblom et al., 1995:19—
20). Lindblom and colleagues argue that a change may fail to spread across the
community (step (1c)) if it results in perceptually more ‘confusable’ or articulatorily
more challenging forms (Lindblom et al., 1995:20). This means that the speaker can
affect the outcome of a possible sound change both at steps (1a) and (1c).

By allowing hyperarticulation as well as hypoarticulation as possible
outcomes of variation in speech production, Lindblom et al.’s (1995) model can
account for phenomena such as fortition and contrast maintenance, whose sources
are less clear in Ohala’s and Blevins’ models (but see Blevins, 2004:285-291 for a
contrast-based account of chain shifts). Lindblom et al. (1995:24) also argue that
speakers strive towards ‘a balance between intelligibility and articulatory energetics’
both in producing and repeating innovative forms, which means that they
acknowledge the role of competing pressures in sound change. However, they do not
provide an account of how this competition is resolved. Moreover, they also do not
clarify under what circumstances listeners will shift to the ‘how’-mode of perception
(see below for a more nuanced approach to this question by Garrett and Johnson,
2013), and it is not clear when a sound change can be kept in check by ‘Articulatory,
Perceptual, Social and Systemic Evaluation’ by members of the speech community.

Therefore, similar to Ohala and Blevins, Lindblom et al. (1995) do not provide a



model-internal mechanism that could explain why universal pressures only lead to
changes in some languages.

Usage-based models of sound change (Pierrehumbert, 2001; Bybee, 2002;
Phillips, 2006; Silverman, 2006, 2012; Wedel, 2006) also tend to focus on steps (1a)
and (1b), although they are capable of accounting for some aspects of (1c) as well
(see e.g. Foulkes and Docherty, 2006; Docherty and Foulkes, 2014). The models
outlined in the previous paragraphs represent phonetic variation at a relatively
abstract level, and conceptualise sound change as the replacement of one
categorical variant with a different one. To give an example, Ohala (1981) illustrates
his misperception-based approach to sound change by suggesting that a string of
sounds originally ‘intended’ as /ut/ by the speaker may be realised with a vowel that
is closer to [y] (as a result of coarticulation between the vowel and the consonant;
Ohala, 1981:183-184). The listener may then reconstruct the target vowel as /y/,
leading to a mini sound change. In fact, Ohala (1993) argues that “[ijln most cases the
‘before’ and ‘after’ states [in a mini sound change] could be contrasting sounds or
sound sequences in some human language” (Ohala, 1993:266). In contrast, usage-
based models often deal with variation at a more fine-grained level, typically
modelling phonetically gradual changes that proceed in small increments (e.g.
Pierrehumbert, 2001). Therefore, there is a sense in which the models described in
the previous paragraphs and usage-based models can be viewed as complementary:
the former can provide a clear account of changes such as /k%/ > /p/, which are
‘articulatorily discontinuous’ (Hansson 2008:863), while the latter can account for
phonetically gradual changes. Note, however, that this complementarity is rarely
exploited or even acknowledged in research within these different frameworks.

There are two crucial assumptions about production, perception and learning
that are typically shared by usage-based accounts of sound change (e.g. Bybee,
2001; Pierrehumbert, 2001): (i) category representations include probabilistic
knowledge of fine phonetic variation and (ii) speakers continue to update these
representations on the basis of their linguistic experience throughout their lifetime.
Models of sound change incorporating these assumptions along with phonetic biases

can implement an important mechanism called the production-perception feedback
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loop (Pierrehumbert, 2001). This mechanism can account for the gradual
incorporation of the effects of automatic low-level phonetic biases into category
representations. The basic idea is as follows. Phonetic targets are chosen on the
basis of the speakers’ learnt probabilistic category representations. Due to the effects
of phonetic biases, these targets are not implemented entirely faithfully: for instance,
vowel undershoot may shift a phonetic target [a] towards a less peripheral [e]
realisation in unstressed syllables. The generation of these potentially biased
variants corresponds to step (1a). The output tokens are fed back into the speakers’
and the listeners’ category representations (1b). If a given phonetic bias applies more
or less consistently to tokens from a specific category, these slightly modified tokens
will keep ‘nudging’ the overall category representation towards the location specified
by the phonetic bias, potentially resulting in large-scale shifts over time. For instance,
a category originally realised as [a] may gradually shift towards [e] or even [a8] in
unstressed syllables as the distorted variants created by vowel undershoot keep
being added to its representation. Importantly, usage-based models are similar to the
other models described above in that they do not typically identify the circumstances
under which this process of change through positive feedback could be inhibited,
although Blevins and Wedel (2009) do suggest that contrast maintenance may play
such an inhibiting role in certain cases.

In sum, the models reviewed above provide crucial insight into the way
universal pressures such as phonetic biases may lead to sound change, but they
cannot answer the question of why universal pressures do not affect all languages in
the same way. Ohala (1993:268) explicitly states that such questions are of little
relevance to research directed at the phonetic bases of sound change, and suggests
that researchers in this area should restrict their attention to steps (1a) and (1b).
However, Baker et al. (2011) have recently pointed out that this restriction does not
work in practice: while models of sound change do not necessarily have to be able to
predict exactly when and where a change will occur, they have to be able to account
for both stability and change.

Stevens and Harrington’s (2014) overview of the recent literature on sound

change and the actuation problem indicates that these problems have received
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increased attention over the last few years (see also the papers in Yu, 2013a). At
least two recent papers have attempted to reconcile phonetically-based accounts of
sound change with the actuation problem (Baker et al., 2011; Garrett and Johnson,
2013). As Stevens and Harrington (2014:5) point out, these papers rely on social,
articulatory and perceptual differences between individuals to account for stability
and change within the same model. Baker et al. (2011) argue that sound change is
dependent on the presence of inter-individual variation in the magnitude of phonetic
patterns such as coarticulation. In their account, innovative variants are only
transmitted between individuals if (i) the new variant is substantially different from the
listener’'s own production (e.g. it shows noticeably more coarticulation) and (ii) the
listener views the speaker as socially influential. This has the following implication for
sound change: ‘the ability of phonetically motivated coarticulation to lead to sound
change depends on the chance alignment of extreme coarticulation with extreme
[social] influence’ (Baker et al., 2011:351). They argue that such ‘chance alignments’
are rare, which results in a situation where stability is the norm, and changes only
take place occasionally (but see Yu, 2013b for a suggestion that such alignments are
not entirely random due to robust correlations between cognitive processing styles
and social traits). Garrett and Johnson (2013) present a different account, which is
based on the idea that there are certain circumstances under which speakers may be
more likely to operate in the ‘how’-mode of perception (cf. above), therefore failing to
compensate for the effects of contextual biases. In their account, this is more likely to
occur when a listener communicates with individuals who belong to a specific group
that the listener wishes to identify with. In such situations, the listener ‘may [...] notice
variants when they are produced by the target group even though they disregard
those same variants when produced by other speakers’ (Garrett and Johnson, 2013:
94). These variants — originally due to phonetic biases — may gain social significance
to the listener, who will then employ them as target productions in their own speech,
thus contributing to the actuation of sound change.

Both of these papers share an important feature: they propose that the
transmission of innovative variants (1b) can only take place under certain

circumstances, which are at least partly determined by social factors. Since the
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transmission of variants is typically blocked, innovations can rarely spread across the
speech community (1c). Thus, Baker et al. (2011) and Garrett and Johnson (2013)
avoid the actuation problem by proposing a tighter link between steps (1b) and (1c).
The account presented in this paper takes a different approach to the
actuation problem, relying mainly on steps (1a) and (1b). Instead of looking at the
effects of a single universal pressure on isolated sound categories, | investigate the
interaction of multiple pressures in a sound system, and assume that the effects of
phonetic biases and contrast maintenance may be attenuated or intensified by
language-specific factors. Therefore, different languages and language varieties may
be affected differently by the same universal pressures. These predicted differences
are not categorical: it is not simply the case that an innovative variant arises in one
variety but not in another. Instead, the predicted cross-linguistic variation is
phonetically gradient. Despite clear differences in focus, the account presented here
is by no means incompatible with the alternative accounts summarised above. The
current paper focuses mainly on how cross-linguistic (and cross-dialectal) differences
impact steps (1a) and (1b), while other approaches to the actuation problem look at
how individual differences impact steps (1b) and (1c). Ultimately, we need answers to
both of these questions in order to gain a better understanding of sound change
actuation, and bringing these two different approaches closer to each other is an

important task for future research.

2.2 Computational simulations in the study of sound change

This paper uses computational simulations to explore possible patterns of interaction
between phonetic biases and contrast maintenance in small artificial sound systems.
This is done by modelling repeated rounds of production and perception by a single
agent (the decision to use a single agent will be explained in more detail in the next
section). These simulations allow us to examine the evolutionary dynamics of a
sound system based on a set of simple assumptions about speech production and
perception, and they illustrate the types of predictions that we can derive from this

model. Although it is possible that these goals could also be achieved through
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thought-experiments, computational simulations provide a more principled mapping
between the model and its predictions. This is necessary in the case of complex
systems, since they can often develop in unexpected ways, and are usually not
tractable using simple verbal argumentation. Although we will see that the dynamics
of the systems investigated in this paper are simple and easy to interpret, there is no
a priori guarantee that a complex system will show such principled behaviour (cf.
Wedel, 2011:136). Therefore, simulations are a useful tool even for relatively simple
model systems. Note that in certain cases, analytical models may provide a
computationally less intensive and therefore more flexible alternative to
computational simulations (see e.g. Kirby and Sonderegger 2013). This paper does
not explore this alternative methodology: the simulation-based approach is
computationally feasible and — at least in the current case — sufficient to fully explore
the model under investigation.

There is a wide range of studies which approach sound change and the
evolution of sound systems through computational simulations (e.g. de Boer, 2001;
Pierrehumbert, 2001; Oudeyer, 2006; Ettlinger, 2007; Boersma and Hamann, 2008;
Wedel, 2006; Garrett and Johnson, 2013; Kirby, 2013; Stanford and Kenny, 2013). In
the rest of this section, | present a brief overview of other simulation-based studies of
sound change, focusing on accounts that are close to the present one in terms of
their focus and general structure. These studies all share a few basic properties.
They simulate the behaviour of artificial agents who repeatedly produce and perceive
sound categories over a long time period. Large-scale changes emerge from the
accumulation of the effects of relatively weak pressures over many iterations. The
main differences among these models lie in the way they implement these properties
and in the specific questions they attempt to answer through simulations.

Pierrehumbert (2001) and Wedel (2006) present computational simulations
which explore the implications of the production-perception feedback loop described
in the previous section. The models in these papers rely on a minimal version of the
production-perception feedback loop, with a single ‘soliloquising’ agent who serves
both as the speaker and the listener. Following Goldinger (1996) and Johnson

(1997), Pierrehumbert (2001) and Wedel (2006) propose exemplar-based models of
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production and perception. That is, they model category representations as exemplar
clouds, which contain phonetically detailed memory traces of previously experienced
stimuli (examples of specific sounds in specific words). These exemplar clouds are
updated continuously, with more recent exemplars playing a more influential role in
production and perception due to a process of decaying memory activation for stored
exemplars. Production targets are generated by sampling from this exemplar cloud,
and category identification proceeds by comparing incoming stimuli to stored
exemplars from different categories. As explained in the previous section, this type of
model can account for the transformation of weak but consistent biases into robust
changes through repeated iterations of the production-perception feedback loop
(Pierrehumbert, 2001). In addition, it can also model the tendency for contrastive
categories to remain separate by assuming that tokens that are phonetically
ambiguous to the listener (e.g. a production of the word bat that happens to be
phonetically intermediate between bat and bef) have a lower probability of being
added to the listener's exemplar cloud than unambiguous tokens (Wedel, 2006;
Blevins and Wedel, 2009). Since the simulations in this paper are based on a similar
model, these ideas are discussed in more detail in the next section.

Kirby (2013) proposes a similar agent-based model of sound change, which
shows how the loss of contrast along one cue dimension (e.g. VOT) can lead to the
enhancement of contrast along a different cue dimension (e.g. f). Kirby’s model
assumes that speakers have a preference towards enhancing contrasts along cue
dimensions that are more informative than others. This model therefore makes the
following prediction: if a previously informative cue loses its informativity due to
external pressures (such as phonetic biases), the next most informative cue will be
enhanced and take over as the main exponent of the contrast. This prediction is
borne out in a recent change in Seoul Korean, where a stop contrast that was
originally cued by VOT is now mainly cued by f (Kirby, 2013). Kirby’s account is
closely related to the current one in that it explicitly stresses the importance of
looking at both contrast-related forces (in this case, cue enhancement) and phonetic
biases. This paper takes this approach even further by looking at more fine-grained

patterns of interaction between these two pressures.
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The models presented by Stanford and Kenny (2013) and Garrett and
Johnson (2013) are also based on exemplar-based storage and a feedback loop
between production and perception. However, these models make stronger
assumptions about the effects of social structure on speech interactions between
individuals. As explained previously, Garrett and Johnson (2013) show that groups of
speakers may phonologise weak phonetic biases differentially depending on whether
their members attribute social-indexical value to biased variants. Stanford and Kenny
(2013) explore a model where agents move around in a simulated world. The
interactions between agents are based on proximity. Moreover, they occasionally add
and remove agents (simulating birth and death), and their world includes two
separate population centres (corresponding to two different cities). They show that
this model can replicate findings about differences between the cross-generational
transmission of chain shifts versus the diffusion of chain shifts from one city to

another (cf. Labov 2007).

2.3 The current approach

The simulations presented in this paper are built on the same set of basic
assumptions as the models summarised in the previous section. They implement the
production-perception feedback loop by modelling the evolution of sound categories
in an agent who repeatedly produces and perceives examples of those categories.
Like the usage-based approach described in section 2.1 and the models reviewed in
section 2.2, the current model relies on two crucial assumptions about production

and perception:

(i) speakers can store phonetic details in their category representations, and
(i) they are capable of modifying these representations on the basis of their

linguistic experience throughout their lifetime.

The first assumption is well-supported by a range of observations in the

literature. Pierrehumbert (1999) and Hawkins (2003) show that fine phonetic details
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are used both in production and in perception, and argue that the ubiquity of fine-
grained cross-linguistic variation in the realisation of phonetic categories is clear
evidence for the presence of phonetic detail in category representations. Similarly,
studies of perceptual compensation have shown that speakers possess detailed
knowledge of patterns of phonetic realisation in different contexts (e.g. Mann and
Repp, 1980; Beddor et al., 2002). Following Kirby (2013), the current model opts for
parametric probability distributions as a tool for representing phonetically detailed
knowledge of category realisations. This type of representation is closely related to
prototype models of category representation (Posner and Keele, 1968). There is no a
priori reason why this type of framework should produce substantially different
evolutionary dynamics from one that assumes exemplar-based category
representations. As Ashby and Alfonso-Reese (1995) demonstrate, the main
difference between prototype and exemplar models of categorisation is that the
former use parametric probability density functions to approximate categorisation
behaviour, while the latter use non-parametric probability density functions for the
same purpose. Soéskuthy (2013) shows that simulated sound systems change in the
same way regardless of the type of category representation as long as these
representations are phonetically detailed. This should also be evident from the
presentation of the simulation results in section 4 of this paper, which are qualitatively
similar to the exemplar-based simulations in Pierrehumbert (2001) and Wedel (2006).
The assumption that speakers can change their category representations
throughout their lifetime also receives ample support from the literature. For instance,
Evans and Iverson (2007) found that Northern English students exposed to Southern
English speech at university exhibit gradient shifts in the realisations of certain
vowels over a period of two years. A related study by Sancier and Fowler (1997)
shows that a native speaker of Brazilian Portuguese studying in the United States
exhibits gradient shifts in the voice onset time (VOT) of fortis consonants as a
function of exposure to Brazilian Portuguese and American English. Finally, a series
of studies by Harrington and colleagues (Harrington et al., 2000; Harrington 2006,
2007) demonstrates long-term changes in the phonetic realisations of certain vowels

in the speech of Queen Elizabeth II.
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The current model borrows an additional assumption from Wedel (2006) and
Blevins and Wedel (2009): that phonetically ambiguous words are underrepresented
in the production-perception feedback loop. This assumption leads to contrast
maintenance at the level of sound categories. Models of sound change based on the
production-perception feedback loop provide a natural way of linking word-level
ambiguity-avoidance to phoneme-level contrast maintenance. Wedel, Kaplan and
Jackson (2013:184) state that in models of this type, ‘any mechanism in production
or perception favoring phonetically more contrastive tokens of minimal pair members
promotes greater phonetic distinction between the phonemes defining that minimal
pair across the lexicon.’ The literature discusses at least two different mechanisms
which might have such effects. One of these is rooted in perception, and the other
one in production. As for the former, Labov (1994), Guy (2003), Wedel (2006) and
Blevins and Wedel (2009) argue that ambiguous tokens of specific categories can be
lost through simple misperception if the listener fails to feed them back into their
category representations, or if they feed them back into the wrong category
representation. The production-based explanation suggests that speakers actively
choose less ambiguous realisations, especially when the production of ambiguous
tokens would lead to a significant loss of information (e.g. Lindblom, 1990; Aylett and
Turk, 2006; Jurafsky et al., 2001). There is currently no compelling evidence that
favours either approach. This paper will focus on the perception-based account,
since it has already been implemented in previous simulation-based papers (e.g.
Wedel, 2006). This choice does not crucially affect the dynamics of the systems
investigated in the following sections.

Although the current approach shares the basic assumptions of previous
computational models, the way these assumptions are put to use differs substantially
from most previous work. In this paper, the focus is not on the presence or absence
of sound changes, but on the limiting behaviour of (potentially) changing sound
systems (this is similar to the approach taken by Kirby and Sonderegger, 2013). As it
will be shown, the sound systems modelled here all share qualitatively similar
patterns of limiting behaviour: convergence towards stable states. Section 4 will

present an overview of several thousand simulation runs, which illustrate these stable

18



states and show that their positions are strongly affected by variations in contingent
factors such as bias proportion and functional load. The systematic exploration of the
parameter space of the model along with a focus on its limiting behaviour is a unique
feature of the present paper.

Given the prominent roles of bias proportion and functional load in the current
model, it will be useful to provide a brief overview of these contingent factors. Let us
start with bias proportion. Many phonetic biases can be viewed as contextual effects:
they only apply to tokens of a given category in the appropriate phonetic
environment. Bias proportion refers to the frequency with which a category finds itself
in a biasing environment. Some authors (including Bybee, 2002 and Harrington et al.,
2008, 2011) argue that contextual effects can cause category-wide shifts, and
suggest that this is especially likely when the category has high bias proportion. This
happens because categories with high bias proportion offer more opportunities for
the bias to apply, and the effects of the bias accrue faster in their representations.
Harrington et al. (2008) suggest that the fact that English dialects are so prone to
undergo /u/-fronting may be due to high bias proportion: according to frequency
counts from the CELEX lexical database (Baayen et al., 1993), English /u/ is
preceded by coronal and palatal consonants around 70% of the time (Harrington
2007).

Functional load is a contingent factor related to the phenomenon of contrast
maintenance. In this paper, functional load is defined as the relative importance of a
phonemic contrast in distinguishing pairs of lexical items. Many authors argue that
contrasts with high functional load (e.g. a large number of minimal and/or near-
minimal pairs) are less likely to be lost than contrasts with low functional load (see
e.g. Martinet, 1952; Blevins and Wedel, 2009; Wedel, Kaplan and Jackson, 2013;
Wedel, Jackson and Kaplan, 2013). This is a straightforward prediction of models
based on the production-perception feedback loop: sound categories with a large
number of minimal (or near-minimal) pairs offer more opportunities for lexical
ambiguities to arise, leading to more misperception. This results in a stronger
pressure for contrast maintenance. Wedel, Kaplan and Jackson (2013) and Wedel,

Jackson and Kaplan (2013) present empirical evidence for this claim using cross-
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linguistic corpus data. They show that historical mergers between phoneme pairs
tend to be associated with low functional load relative to cases where no mergers
have taken place.

There is one final assumption in the current model that should be discussed
before we begin looking at the specifics of the simulations in the next section: the use
of a single agent. This is an obvious simplification, since real speech events typically
(though not always) involve multiple participants. The reason for this simplification
(also used by Pierrehumbert, 2001 and Wedel, 2006) is mostly practical. Simulations
with a single agent are computationally less intensive and more tractable than multi-
agent simulations. The question is, of course, whether this simplification changes the
evolutionary dynamics of the simulated sound systems. In the current case, the
answer is no. As long as we assume that all agents behave in the same way in
production and perception, adding further agents to the simulations does not change
the final outcomes. Sdskuthy (2013:115-120) demonstrates this by showing that
single-agent simulations implemented in the same way as the simulations in the
current paper produce exactly the same outcomes as simulations with six interacting
agents. This is because (i) the update of category representations based on
perceived stimuli guarantees that all agents will have approximately the same
category representations (assuming that all pairs of agents interact at the same rate)
and (ii) if multiple agents share the same category representations, these
representations will be affected in exactly the same way by production/perception
events.

The goal of this simplification is not to downplay the importance of individual
differences. In the real world, individuals differ with respect to their physical,
psychological and social attributes, and this can potentially lead to more complicated
evolutionary dynamics than the type shown in the simulations below (see Stevens &
Harrington, 2014 for an overview). Indeed, Stanford and Kenny (2013) and Garrett
and Johnson (2013) demonstrate how added assumptions about individual
differences can lead to inhibited changes and imperfect diffusion from one dialect to
another. The current simulations aim to provide a better understanding of the

dynamics of the production-perception feedback loop at a more abstract level and to
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show that different languages and varieties may be affected differently by universal
pressures even in the absence of individual social and cognitive differences. It is an
important goal for future research to show how the addition of more complex
population dynamics can alter the behaviour of this simple model. The results

presented in this paper will serve as a useful baseline for such investigations.
3. Methods
3.1 Simulating the production-perception feedback loop

The simulations presented in this paper are all built around the notion of the
production-perception feedback loop. They model the behaviour of a single agent
who produces a range of category realisations, which are then fed back into their
representations. This loop is repeated many times in the course of a single simulation
to allow for the effects of phonetic biases and contrast maintenance to accumulate in
category representations

Figure 1 provides a schematic illustration of the production-perception

feedback loop.

feedback

category . .
. sampling —>| biases
representations

ambiguity
filter

discard
token

Figure 1: The production-perception feedback loop.

The diagram divides the feedback loop into several smaller steps, which correspond
to various stages of speech production and perception. The loop starts with category
representations, which are used to generate production targets through a simple

sampling mechanism. These production targets are then displaced through the
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application of phonetic biases. The ambiguity filter represents the mechanism for
lexical contrast maintenance described in Section 2.3: phonetically ambiguous
tokens are occasionally discarded, which means that they have less influence on
category representations. This only happens rarely in the model used in this paper
(this is controlled by the functional load parameter r described below). If the token
successfully passes the ambiguity filter, it is fed back into category representations,
and the loop starts over again.

Category representations are modelled as normal distributions defined over
continuous phonetic dimensions. For reasons of simplicity, only a single phonetic
dimension is used in the simulations presented in this paper. Since the simulations
are structured around the phenomenon of /u/-fronting, this dimension corresponds
roughly to vowel backness. A normal distribution can be defined exhaustively using
two parameters: the mean and the standard deviation (or variance). To illustrate,
Figure 2 shows a normal distribution calculated on the basis of F2 measurements for

25 tokens of the vowel [u] from American English (Hillenbrand et al., 1995).
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Figure 2: 25 tokens of the vowel [u] from American English (grey lines), the
corresponding normal distribution (the black curve), and its mean and standard

deviation.

Normal distributions can be used to calculate production targets through sampling
(the second step in Figure 1): choosing a random point along the phonetic dimension
represented by the x-axis with a probability proportionate to the value of the

probability density function around that point. The current implementation of the
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production-perception feedback loop follows previous approaches (e.g.
Pierrehumbert, 2001; Wedel, 2006) in adding a small amount of noise to production
targets. This is analogous to production error, whereby a production target is not
realised faithfully due to imperfections in the articulatory apparatus (cf. Feldman et
al., 2009). Although production error may seem like an optional component in this
model, its absence would lead to highly unrealistic patterns of behaviour. Without this
error term, it would be theoretically possible for agents to realise categories without
any variation (e.g. consistently producing a vowel with the same formant values), or
to base contrasts between sound categories on arbitrarily small phonetic differences
(e.g. consistently distinguishing two vowel categories by a single Hertz along the F2
dimension). The absence of such patterns in natural languages is a strong argument
for modelling production with an error term.

Phonetic biases are implemented as point-like attractors in phonetic space,
which affect tokens in specific environments. | will illustrate this using the example of
/u/-fronting in coronal and palatal contexts. The source of this effect is a fronting of
the tongue body during the articulation of /u/ under the influence of the neighbouring
coronal and palatal consonants, which yields a raised F2 (Harrington et al.,
2011:122). In other words, the coronal/palatal constriction creates a target location
and the tongue body is displaced towards this point in articulatory space during the
articulation of the vowel. Note that the vowel does not have to reach this target either
in articulatory or in acoustic space — in fact, the extent of the displacement may be
rather small. Moreover, since this movement is target-oriented, the size of the
displacement will be even smaller when a given production is already close to the
attractor (otherwise the biased production might end up ‘overshooting’ the bias
attractor).

The behaviour described above can be formalised using a logistic function:

1
bias;(x) = x +s; - 0.5 (1)

1+ exp (x ;bi)

where x is a real number representing the production target, s;is a parameter that
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determines the strength of bias /, b;is the location of the bias attractor and dis a
scaling factor (set to 1 in all the simulations in this paper). Figure 3 illustrates the size
and the direction of the displacement caused by a phonetic bias as a function of

where the original production target is in phonetic space (b;= 0 and s;= 0.01).

0.004
|

amount of displacement
0.000
|

-0.004
!
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Figure 3: The size and the direction of the displacement caused by a phonetic bias
as a function of position along a given dimension. Parameter settings: bi= 0, s;=

0.01,d=1.

When a production target has a value that is lower than b, the function in Figure 3
increments it by a small amount. When the production target has a value that is
higher than b;, the sign of the function changes, which means that it now decrements
the original value. Note also that the size of the displacement increases as we move
away from the bias attractor, but the logistic function imposes an upper limit on this
increase.

The simulations in the next section include a further parameter that relates to
phonetic biases: bias proportion. Bias proportion is the relative frequency with which
production targets from a given category are exposed to a specific phonetic bias.
Therefore, bias proportion can take on values between 0 (the category is never
affected by the bias) and 1 (it is always affected by the bias).

The ambiguity filter is a specific way of implementing contrast maintenance,
originally proposed by Wedel (2006). As shown in Figure 1, this filter has two

potential outcomes: the production is either (i) fed back into the appropriate category
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representation or (ii) it is discarded. The choice between these two outcomes
depends on how ambiguous the production is to the listener, or, in other words, how
likely it is to be misperceived. Highly ambiguous forms have a relatively high
probability of being discarded, while unambiguous forms are likely to be kept.
Assuming that the correct category label for stimulus x is c;, the probability of

misperception is given by the following formula:

p(x|c)

Glx)=1—- o———
p(_'ll ) 7=1P(X|Cj)

(2),

where nis the overall number of categories, and p(x | c) is the probability density
function associated with category c (in this case, a normal distribution). This formula
derives straightforwardly from Bayes’ theorem, assuming that all category labels
have the same prior probability. It is closely analogous to the categorisation formulae
used in exemplar and prototype-based frameworks (cf. Ashby and Alfonso-Reese,
1995).

The misperception probabilities given by this formula vary as follows. Let us
assume that there are two categories, a fully back /u/ and a fully front /i/ (for
expository convenience, | treat the distinction between front unrounded and back
rounded vowels as a single continuum and refer to it simply as backness). The
correct category label for stimulus xis /u/. If x is located in a part of the vowel space
typically associated with /u/, but not /i/ (high-back), the probability of misperception
will be low. If it is intermediate between /u/ and /i/, the probability of misperception will
be higher. Finally, if it is located in a part of the vowel space typically associated with
/il, but not /u/ (high-front), the probability of misperception will be very high.

The probabilities above are weighted by a further factor, which is a proxy for
functional load in the current model. If functional load is low, even ambiguous
productions will have a high probability of being kept, reflecting the fact that
misperception is less likely to take place if lexical competition is limited. Conversely, if
functional load is high, even unambiguous productions may be discarded due to a
high degree of lexical competition. In the current model, functional load is

implemented as a parameter with values between 0 and 1. The full formula for the
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ambiguity filter (including functional load, r) is given below:

p(discard x | x, ¢;) = rp(=c; | x) (3),

where p(discard x| x, ¢) is the probability of discarding token x from category c.

The final step in the production-perception feedback loop shown in Figure 1 is
feedback: updating the appropriate category representation as a function of the
incoming stimulus. The current model represents categories in the form of normal
distributions, which are defined by their means and standard deviations. Therefore,
category update consists in shifting these parameters to accommodate the incoming
stimulus. The mean will always shift towards the stimulus, while the standard
deviation will either increase or decrease depending on how far the stimulus is from

the mean. The following formulae are used to update the mean and the standard

deviation:
ku, + x
Buwi = = @
2 (k - 1) 0-7%-}' k (.un - .un+1) + (x - ﬂn+1)2 (5)
On+1 = k

These formulae are weighted variants of the unbiased estimators of the population
mean and variance, where previous experience with the category (represented by u,
and ¢?) has weight k in calculating the new parameter estimates u,,,; and o2, ;,
while the new stimulus has weight 1. In other words, the parameter k in these
formulae is inversely proportional to the degree to which a single stimulus can shift
the parameters of the category representation. | will refer to k as the constant of

update.

3.2 The simulation setup

Each of the simulations contain two categories, defined over a single continuous

phonetic dimension. | will refer to this phonetic dimension as backness, which is an
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abstract measure of horizontal tongue position, with higher values representing a
higher degree of backness. The categories will be labelled /i/f and /u/. Note that these
labels are used for convenience: the exact identity of the phonetic parameters
modelled in the simulations has no bearing on the main results (e.g. using a VOT
contrast between stops would give very similar overall dynamics). Backness is
defined as a closed interval between [0,1]; tokens that fall outside this interval are
simply shifted back to the boundaries (i.e. 0 or 1). This boundedness introduces an
additional bias into the simulations: since extreme productions are not fed back into
category representations, there is a weak pressure for the categories to move
towards the centre of phonetic space (in this case, the value 0.5).

In order to ensure that the final outcomes are not a function of specific
starting values for the categories, the initial category means are generated randomly.
The centre of the category /u/ can take on any value between [0.2,0.9], while the
centre of the category /i/ is constrained to take on values between [0.1, py,— 0.1]. This
means that /i/ always starts with a realisation that is more front than /u/. The initial
standard deviation is the same for both categories: 0.07 (this is a reasonable value
for vowels defined over a single dimension of backness with a unit length).

Both categories are exposed to the same universal fronting bias, with a bias
attractor at 0.4 (corresponding to the relatively — but not completely — front F2 locus
of coronals). The strength of this bias is set to 0.015, which means that the maximum
absolute displacement for a production target is less than 0.01. This corresponds to a
weak bias, whose effects can only be seen after a large number of iterations. The
bias proportion values are not identical for the two categories: bias proportion is fixed
at 0.07 for /i/ (i.e. /il is exposed to the bias 7% of the time), while it is varied
systematically between [0,1] for /u/. This corresponds to the type of variation in
contingent factors that is often be observed cross-linguistically (e.g. the relative
frequency of /u/ in coronal/palatal environments differs from language to language;
the bias proportion of /i/ is kept constant in order to examine the effect of varying just
one factor).

The value of the parameter corresponding to functional load (i.e. rin (3)) is

varied between [0,0.05]. Although this may seem like a very narrow range, given that
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r can potentially take on much higher values too, we will see that a value of 0.05
already results in a high degree of contrast maintenance. There is also some reason
to assume that higher values of rmay be unrealistic. One way of conceptualising ris
as the rate of ‘catastrophic’ misperceptions, where the listener fails to reconstruct the
intended form (cf. Wedel, 2006; Séskuthy, 2013). It is unlikely that this happens very
often: in many cases, the form will be recoverable from the context. Given that we do
not have sufficient information about misperception in natural speech to reliably
estimate the value r, a conservative estimate is preferable.

There are two further parameters in the simulation: the value of k (cf. (4), (5)),
which determines the relative influence of incoming stimuli, and the number of
iterations. The value of kis 2,000 in all the simulations, which means that a single
stimulus will only have a very small effect on the overall category representation.
Each simulation is run for 4 million iterations. Such a large number of iterations is
necessary to ensure that the simulated systems can settle into stable states.

A single simulation round consists of the steps shown in Figure 1, performed
separately for each of the two categories. In each round, the simulated agent first
generates a production target for one of the categories and then applies the fronting
bias to this category. At this point, the agent may proceed in two different ways. If the
token is ambiguous between the two categories, there is a small chance (0-5%) that
they may discard it (cf. section 3). Otherwise, they simply feed it back into their
category representation for the target category. This is repeated for the other
category as well. This means that each category is produced 4 million times in each
of the simulations. This could be translated into real speech interactions as ‘a single
speaker in a community producing two phonemes 4 million times,’ although such
interpretations are not particularly useful in the current case, given the abstract focus
of the simulations. This procedure was implemented in R, a programming language
for statistical computing (R Core Team, 2014). In order to facilitate the replication of
the experiments reported below, the code has been attached as supplementary
material.

The values of bias proportion and functional load are varied systematically in

an effort to explore the parameter space of the model. There are 11 possible equally
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spaced values for each parameter: for bias proportion, the lowest value is 0 and the
highest value 1; for functional load, the lowest value is 0 and the highest value 0.05.
Each combination of parameter values is represented by 25 different simulations,
giving an overall 3025 different simulation runs.

Table 1 provides a summary of the parameter values used in the simulations.

PARAMETER FORMULA VALUE
Initial category mean for /u/ Hu, (4) [0.2,0.9]
Initial category mean for /i/ i, (4) [0.1,u.—0.1]
Initial category SD for /u/ and /i/ g, (5) 0.07
Variance inflation v 0.001
Bias attractor b, (1) 0.4

Bias strength si, (1) 0.015
Bias proportion for /u/ - [0,1]

Bias proportion for /i/ - 0.07
Scaling factor for bias d, (1) 1
Functional load r, (3) [0,0.05]
Weight of existing parameter values k, (4-5) 2,000
Number of iterations - 4,000,000

Table 1: A summary of the parameter values used in the simulations. The first
column shows the name of the parameter, the second one links the parameter to the

relevant formula in Section 3.1, and the third column shows the value.

4. Results

The results of the simulations will be presented in three parts. Section 4.1
summarises the results of simulations which only show the effects of phonetic biases,
but not contrast maintenance (i.e. functional load is set to 0). Section 4.2 then
discusses simulations which show the effect of contrast maintenance, but not

phonetic biases (i.e. bias proportion is set to 0). Finally, Section 4.3 presents the rest
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of the simulation results, which illustrate how contrast maintenance and phonetic

biases interact with each other in determining the outcomes of the simulations.

4.1 The effects of phonetic biases

Let us first discuss those simulations where contrast maintenance plays no role (i.e.
simulations where the value of the functional load parameter is 0). Overall, there are
275 such simulations: 25 for each value of bias proportion between [0,1]. In order to
get a sense of how the category means evolve in these simulations, let us first focus
on a subset of the data with extreme bias proportion values (0.1 and 0.9). Figure 4
shows how the representations of /u/ and /i/ change as a function of time by plotting
the category means against the number of iterations. The top row represents
simulations with a bias proportion value of 0.1, and the bottom row simulations with a
bias proportion value of 0.9. In the first two columns, each line represents the
evolution of a given category (/u/ or /i/) in a single simulation run. The third column
shows how the overall range of category means changes over time by plotting 95%
confidence intervals based on the trajectories in the first two columns. It is useful to
recall that /i/ is always initialised with a backness value which is at least 0.1 units
lower than the initial value of /u/ in the same simulation. This is the reason why the /i/

trajectories have a consistently lower starting point than the /u/ trajectories.
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Figure 4: The individual trajectories of the category means for |u/ (first column) and /i
(second column), and 95% confidence intervals for the two sets of trajectories (third
column). The top row indicates all simulations with a bias proportion value of 0.1,

and the bottom row all simulations with a bias proportion value of 0.9.

The simulated trajectories show a number of clear trends. First of all, both /u/
and /i/ seem to be moving towards a similar (though not identical) range of final
values between 0.4-0.5. This is, of course, what we expect based on the structure of
the simulations: the phonetic bias pulls both categories towards the value 0.4, while
the boundedness of phonetic space exerts a weak pressure on both categories to
move towards the central value of 0.5. Second, once the category means reach this
range, they settle into a stable state and do not show any further systematic
changes. This is particularly clear in the graph in the lower left corner, which shows
the evolution of /u/ when the value of bias proportion is set to 0.9. The category
means move rapidly towards the area between the bias attractor and the centre of
phonetic space during the first 1 million iterations. All subsequent changes can be
interpreted as random fluctuations within a limited region.

At this point, it will be useful to introduce the notion of adaptive landscapes,
which will make it easier to present the results of the simulations in a systematic way.
The adaptive landscape is a powerful visual metaphor originally proposed in the field
of evolutionary biology (Wright 1932). Adaptive landscapes in evolutionary biology
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can be visualised as topographical maps, where latitude and longitude represent a
range of different possible traits, and altitude represents the fitness of the traits.
Fitness simply stands for reproductive success: a trait with low fitness will quickly die
out in a population, while a trait with high fithess will likely survive for many
generations. Due to natural selection, populations converge towards peaks in the
adaptive landscape and tend not to descend to lower altitudes once they have
reached a peak (often resulting in stable sub-optimal solutions).

Adaptive landscapes can also be used to describe the evolution of the
simulated sound systems discussed in this paper. Figure 5 shows a kernel density
estimate of the distribution of the category means for /u/ after 4 million iterations for
all simulations where the value of bias proportion is 0.9 (cf. the panel in the lower left

corner of Figure 4).
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Figure 5: The distribution of final category means for /u/ when bias proportion = 0.9
and functional load = 0. Loosely speaking, this distribution can be interpreted as an

snapshot of the adaptive landscape for /uy/.

As has been noted above, this distribution represents a stable state: although the
initial category means have a uniform distribution between [0.2,0.9], by the end of the
simulation they all converge towards a narrow range of values (determined by the
location of the phonetic bias and the boundedness of phonetic space), and stay
within that range. In other words, categories within this range are reproduced
faithfully in later iterations, while categories outside this range are not. If we limit our

attention to the category means (despite the fact that the adaptive landscape may
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include other properties as well, such as category standard deviations), this diagram
can be interpreted as a snapshot of the adaptive landscape for this particular type of
simulation. The category means evolve towards the peak over many iterations.
Importantly, the shape of the adaptive landscape is a function of the parameters that
serve as the input to the simulations.

Let us now see how variations in bias proportion affect the adaptive
landscape for the category means of /u/ and /i/. Figure 6 shows how the distribution
of category means at the end of the simulations varies as a function of bias

proportion.
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Figure 6: The final category means for /ul (black) and /il (grey) as a function of bias
proportion. The dots represent averages, and the vertical lines standard deviations.
The dotted horizontal line shows the location of the bias attractor, and the dashed

horizontal line the centre of phonetic space.

An inspection of the values for /i/f shows that the bias proportion of /u/ has no
systematic effect on the position of /i/. The small fluctuations in the distribution of
category means are due to chance. This is not a surprising result: the two categories
are completely independent of each other in these simulations, which means that the
adaptive landscape for /i/ is not affected by changes in the bias proportion of /u/.
However, the adaptive landscape for /u/ does change. At low values of bias
proportion, the peak is close to 0.5, and the range of possible values is relatively
wide. This is because the fronting bias has very little influence on the category, and

the stable state for the category is determined mainly by the weak bias towards
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central values resulting from the boundedness of phonetic space. As we move
towards higher bias proportion values, the peak shifts closer to the location of the
bias attractor, and the range of possible values becomes much narrower, reflecting

the increased influence of the fronting bias.

4.2 The effects of contrast maintenance

To show how contrast maintenance affects the simulated sound systems, | will now
present the results from those simulations where phonetic biases only had a minimal
effect on the sound categories. The value of bias proportion for /u/ is fixed at 0.1 for
all the simulations discussed in this section (0.1 was chosen in order to ensure that
the two categories have comparable bias proportion values). Figure 7 illustrates the
evolution of category means over time for simulations with extreme values for

functional load (0.005 and 0.045). The figure is structured in the same way as Figure

4.
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o | w | ® | = /u/
=) n O n O 0 /il
1%} 1% (%]
Q = Q — Q —
£< 2< 2<
8o =l 8o
o i e} i o i
i < | 4
o T T T T T o T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
iterations (millions) iterations (millions) iterations (millions)
/u/ trajectories; func load = .045 /i/ trajectories; func load = .045 both trajectories; func load = .045
o | w | ® | = /u/
»n O » O 7%= i
1%} 1% (%]
Q = Q — Q —
£< 2< 2<
8o =l 8o
o i e} i o i
i < | 4
o T T T T T o T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
iterations (millions) iterations (millions) iterations (millions)

Figure 7: The individual trajectories of the category means for /u/ (first column) and /i
(second column), and 95% confidence intervals for the two sets of trajectories (third
column). The top row indicates all simulations with a functional load of 0.005, and the

bottom row all simulations with a functional load of 0.045.

The top row shows a moderate amount of separation between the category means. It
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is useful to compare these graphs to the ones in the top row of Figure 4, which
shows simulations with the same bias proportion values, but with a functional load of
0. The final ranges for /u/ and /i/ are clearly further apart for the current simulation
setup than they are for the one illustrated in Figure 4. This indicates that even a
contrast with very low functional load can exert a relatively strong influence on the
category means. Looking at the simulations with a functional load of 0.045, the
separation between the category means becomes much sharper: /i/ and /u/ converge
towards clearly distinct ranges of values. Increasing functional load leads to a higher
degree of contrast maintenance.

Figure 8 shows the category means at the end of the simulations.

contrast maintenance: category means
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Figure 8: The final category means for /ul (black) and /il (grey) as a function of
functional load. The dots represent averages, and the vertical lines standard
deviations. The dotted horizontal line shows the location of the bias attractor, and the

dashed horizontal line the centre of phonetic space.

The effect of functional load is even clearer in this graph: while the final category
means are relatively close at low values of functional load, at higher values they
move far apart, and the range of possible values also becomes somewhat narrower
for both /u/ and /i/. Note also that the relationship between contrast maintenance and
functional load is non-linear: initially, even a small increase in functional load leads to
a large increase in contrast maintenance, but at higher values of functional load the
degree of contrast maintenance becomes fixed and does not seem to grow any

further.
35



As the value of functional load increases, there is an important qualitative shift
in the behaviour of the simulations. At very low values of functional load, there is
hardly any contrast maintenance, which means that the two categories evolve
independently of each other. In such simulations, each of the categories moves in its
own adaptive landscape. However, as the effects of contrast maintenance become
stronger, the categories lose their independence, and start evolving together as a
system. As a result, it makes more sense to talk about an adaptive landscape for the
sound system, as opposed to separate adaptive landscapes for individual categories.
The peak in this landscape is a combination of category means that are sufficiently
far apart, and which also satisfy other pressures (in this case, the pressure to move

towards central values, which results from the boundedness of phonetic space).

4.3 The combined effects of phonetic biases and contrast maintenance

Sections 4.1 and 4.2 focused on the separate contributions of phonetic biases and
contrast maintenance. The current section looks at how these two different forces
interact with each other in determining the outcomes of the simulations. The previous
sections have already established that the main contribution of phonetic biases and
contrast maintenance is in determining the location of the peaks in the adaptive
landscape which the sound systems converge towards. Therefore, this section
focuses on the final outcomes of the simulations after 4 million iterations. To give a
full picture of how phonetic biases and contrast maintenance interact with each other,
| provide a summary of the final outcomes of all 3025 simulations (including the ones
discussed in sections 4.1 and 4.2).

Figure 9 shows the average final category means (left-hand panel: /u/; right-
hand panel: /i/) for each set of 25 simulations representing a given combination of

bias proportion and functional load.
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Figure 9: The final category means for |u/ (left) and /il (right) as a function of
functional load and bias proportion. The shading represents the absolute average
backness of the category means (darker rectangles stand for the more back values).

The numbers on the contour lines show specific backness values.

Functional load and bias proportion for /u/ are plotted along the x and y axes,
respectively. The average backness values are represented by the lightness of the
small rectangles: darker rectangles stand for more back realisations, while lighter
ones for more front realisations. The shading is comparable across the two diagrams,
that is, the same shade of grey represents the same backness value in both of them.
Contour lines have been added to make the graphs easier to interpret. Note that
although the final means for the two categories are shown in two separate panels,
these panels represent different aspects of the same adaptive landscape, as the
stable states for /u/ and /i/ are not independent of each other.

Let us first look at the left-hand panel, which represents /u/. The fronting bias
and contrast maintenance clearly act against each other. When bias proportion is
high and functional load is low, the category mean for /u/ approaches the bias
attractor, with values close to 0.4. Conversely, when the bias proportion is low and
the functional load is high, the realisation of /u/ remains confined to more back values
(i.e. 0.65-0.7) to allow more space for /i/. At intermediate values of bias proportion
and functional load, we see a continuous range of compromises between these
extremes, which are determined by the relative strengths of the two forces. For
instance, a bias proportion of 0.4 combined with a functional load of 0.01 yields a

category mean of roughly 0.55 for /u/. It should be noted that the contour lines

37



become horizontal once functional load rises above 0.02. This is because further
increases in functional load have little influence on contrast maintenance beyond this
point (cf. Section 4.2), while bias proportion continues to have the same more or less
linear effect on the category mean for /u/.

The category /i/ is affected in a slightly different way. Variations in the
functional load of the contrast have similar effects on both categories: as functional
load increases, they shift further away from each other. This is clearly evident in the
panel on the right, where we see that increasing functional load has a fronting effect
on the category mean for /i/. This occurs because /i/ is repelled away from /u/, which
occupies the back half of the continuum. However, variations in the bias proportion
parameter for /u/ can only have indirect effects on /i/. At lower values of functional
load, the two categories evolve independently of each other (cf. section 4.2), and
therefore varying the bias proportion for /u/ has no effect on /i/ at all. However, as
functional load increases, the bias proportion for /u/ begins to have a strong influence
on the location of the centre of /i/, with higher bias proportion values yielding more
front realisations of /i/. This is because the high bias proportion of /u/ draws this
category closer to the bias attractor at 0.4, and /i/ is forced to move towards more
extreme front values in order to satisfy contrast maintenance.

Crucially, all the observations presented above can be interpreted as
statements about the adaptive landscape for this simple sound system. The optimal
combination of category means (that is, the peak in the adaptive landscape) is
determined by the values of bias proportion and functional load. Each of the
simulated systems show convergence towards the peak in the adaptive landscape
over a long time period. Once they reach this peak, they do not stray far from it.

Below is a summary of the main findings of Sections 4.1-4.3. These findings

will serve as the basis of the discussion in the next section.
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1. The simulated sound systems converge towards stable states in the adaptive
landscape regardless of the specific parameter values.
2. The locations of these stable states are determined by bias proportion and
functional load:
a. Increasing bias proportion draws the stable state for a specific
category closer to the bias attractor.
b. Increasing functional load strengthens the interdependence between
the categories, and forces the stable states further apart.
3. Intermediate values of bias proportion and functional load result in systems
representing various compromises between phonetic biases and contrast

maintenance.

5. Discussion

In order to clarify where the main contribution of this study lies, it is important to point
out where the findings reported above overlap with previous observations in the
literature. Pierrehumbert’s (2001) simulations demonstrate that the effects of weak
biases can be magnified through the production-perception feedback loop, yielding
gradual but robust changes. The fact that the categories in the current simulations
converge gradually towards the bias attractor is simply a different aspect of the same
phenomenon. Bybee (2002) shows that the rate at which a given lexical category
undergoes a reductive sound change varies as a function of its exposure to contexts
favouring the change. The effect of bias proportion reported in the previous section is
closely related to this finding. Wedel (2006) and Blevins and Wedel (2009) show that
local selection pressures favouring non-ambiguous tokens can lead to contrast
maintenance at the level of word forms and sound categories. The mechanism used
to implement contrast maintenance in this study is taken from Wedel (2006). Thus, it
is not surprising to find that the categories in the current simulations stay distinct at
higher values of functional load.

The main finding of this paper is that predictions relating to pressures on

sound change are not simply about the absence or presence of change: they are
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about the peaks in the adaptive landscape towards which sound systems converge.
The simulations presented in the previous section all show the same type of
asymptotic behaviour: convergence towards a stable state. In some of the
simulations, the categories are initialised with values that already satisfy the
pressures on the sound system, and simply stay close to these initial values. In other
simulations, the categories are initialised with values that do not satisfy the pressures
on the sound system, and undergo an initial period of change before they reach a
stable state. But regardless of what happens at the beginning of the simulation, the
final outcome is always the same: the categories settle into an equilibrium and do not
undergo any further systematic changes. The influence of factors such as bias
proportion and functional load cannot simply be described in terms of categorical
labels such as actuation versus blocking. For instance, it is not the case that beyond
a certain level of functional load changes that would bring /u/ and /i/ closer to each
other are categorically blocked. Instead, bias proportion and functional load act
together to shape the adaptive landscape and determine the configuration in which
the simulated sound systems become stable.

The simulation results also demonstrate how universal pressures and
contingent factors interact with each other (see Section 1 for a definition of these two
types of conditioners of sound change). As it has been explained above, gradient
variations in contingent factors such as bias proportion and contrast maintenance
yield gradient changes in the stable states for /u/ and /i/. Although the range of
possible stable states is fairly wide, it is by no means unconstrained: universal
pressures such as phonetic biases and contrast maintenance impose limits on the
set of possible final outcomes and serve as the basis of statistical universals. While a
specific phonetic bias may not be able to have a strong influence on a given sound
system (e.g. due to low bias proportion or high functional load), its effects will still be
seen in many other systems. Since pressures on sound change such as phonetic
biases are universal, they will exert the same influence on the adaptive landscapes of
all sound systems, even if this influence is mediated by contingent factors. This
means that — in a statistical sense — we will likely encounter more languages

satisfying a given pressure than we should expect if cross-linguistic distributions
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arose purely by chance.

Importantly, the approach to sound change outlined above avoids the version
of the actuation problem described in Section 1. Why is it the case that specific
phonetic biases are not phonologised in all languages, and contrast maintenance
does not always block mergers? If these pressures are universal, should we not
expect every language to succumb to them sooner or later (cf. Baker et al., 2011)?
These questions only make sense if we focus narrowly on the effects of isolated
phonetic biases on individual categories, that is, if we study sound change in a
vacuum. When we look at the interaction of several different factors in a complex
system, it becomes clear that no single system could possibly satistfy all universal
pressures at the same time, given that many of these pressures act in opposite
directions. All universal pressures have an influence on the adaptive landscapes
navigated by sound systems, but the strength of their influence will vary substantially
across different languages as a function of contingent factors and simple chance. As
a result, the same universal pressures will affect different languages in different
ways.

At this point, a different issue arises: the simulations in the previous section
suggest that sound systems should not show robust changes once they have settled
into a stable state. However, although temporary stasis is possible, the sound
systems of natural languages never stop changing completely. Therefore, it may
appear that this account ‘underapplies’ by ‘failing to predict cases where change
occurs’ (Baker et al. 2011:349). This apparent problem results from the fact that we
have viewed the adaptive landscape as a static, unchanging entity so far. However,
the adaptive landscape itself can undergo changes. Contingent factors are
dependent on external factors such as lexical distributions, which can themselves
change. For instance, if there is a rise in the frequency of morphemes where a given
category occurs in a biasing environment, the bias proportion of the category will also
increase. When the factors that form the basis of the adaptive landscape undergo
changes, the location of the peaks in the landscape will be affected as well. As a
result, a sound system that had previously reached a stable state may find itself in an

unstable region of the adaptive landscape, which will lead to sound change (see
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Wedel, 2009 for further examples of how changes at one linguistic level can lead to
changes at other levels). To put it more simply, sound changes are predicted to occur
when the factors that determine the adaptive landscape undergo substantial
changes. This approach to sound change can therefore account both for stability and
change.

As it has been noted in the introduction, the main strength of this framework
lies in its ability to generate testable predictions. The type of simulation presented
above can be used to derive predictions about stable configurations for sound
systems at different settings for contingent factors. The contingent factors mentioned
above (bias proportion and functional load) can be estimated directly from corpora by
looking at lexical frequency distributions (e.g. functional load can be estimated
through minimal pair counts; cf. Wedel, Jackson and Kaplan, 2013; Wedel, Kaplan
and Jackson, 2013). Therefore, it is possible to generate predictions for the locations
of sound categories in a specific language by running simulations where the input
parameters are taken from corpus data. These predictions can then be matched to
actual acoustic measures from the language. To give an example, the simulation
results in Section 4.3 can be checked against F2 measurements and corpus
estimates for bias proportion and functional load from languages like English,
Japanese, Spanish, where there are only two high vowels. An important advantage
of this approach is that it allows us to test assumptions about the mechanisms
underlying sound change without requiring longitudinal data.

It is, of course, possible that we find that the results of such an experiment do
not match the predictions from the simulations. This would be a strong indication that
at least some of the specific assumptions of the simulations are wrong. For instance,
it is possible that the implementation of the fronting bias described above is
unrealistic. The simulations presented above are relatively simple in terms of their
make-up: they do not include a mechanism for merger and they say nothing about
social factors, frequency effects and a range of other factors. Many of these would be
possible to implement in some form in the framework described here, and, as shown
in section 2, such extensions have been explored in the modelling literature. For

instance, Kirby’s (2013) model involves contrast along multiple dimensions and a
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mechanism of contrast enhancement, and shows how a contrast that is weakened
along one cue dimension can be enhanced along a different dimension under a
pressure to maintain phonemic oppositions. Garrett and Johnson (2013) add
individual differences to their model, and demonstrate that an enhanced architecture
of this type can tackle both stability and change. The simulations in Stanford and
Kenny (2013) incorporate complex social and spatial dynamics, and are therefore
capable of replicating differences between diffusion and transmission. Importantly,
however, these models do not seem to differ substantially from the current one in
terms of the nature of their predictions. The simulated sound systems appear to
evolve towards stable states (even if these stable states are not the same for
different subpopulations), and the locations of the stable states vary as a function of
contingent factors (e.g. social structure in the case of Garrett and Johnson, 2013 and
Stanford and Kenny, 2013). This is precisely where the main strength of the
approach described in the present paper lies: it makes it possible to compare a range
of different models in a unified setting.

Another way in which the current simulation framework could be extended is
by looking at more complex sound systems. The simulations in this paper only
include two categories. One important question for future research is whether the
results about stable states generalise to more complex systems with multiple sound
categories and perhaps additional sources of pressures. The results presented by
Séskuthy (2013) are promising in this respect, as they show that sound systems with
3, 5 or 7 sound categories evolving in a two-dimensional space show qualitatively
very similar dynamics to the ones described in this paper. These simulated sound
systems also converge towards stable states, although the structure of the adaptive
landscape is more complicated, with several distinct peaks that the systems can
settle on. Other related simulations of complex sound systems by de Boer (2001) and
Oudeyer (2006) also show relatively stable outcomes.

Let us briefly review the main implications of this account for research on

sound change. Consider the following quote from Weinreich et al. (1968:137):

‘[...] it seems to us unlikely that the actuation problem will readily yield to
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purely structural investigations, and we expect that their contribution will be
confined to the task of stating limitations and elucidating — in part — the
mechanism of language change. Solutions to the actuation problem must

be expected from other directions.’

The current approach shows that it is possible address certain aspects of the
actuation problem by looking at structural aspects of language, although it
acknowledges that a full account of sound change actuation will need to take both
the initiation and the spread of sound change into account. A key suggestion of this
paper is that different languages and language varieties may converge towards
different stable states as a function of differences in contingent factors such as bias
proportion and functional load. It is therefore a crucial task for future research to
determine the extent of cross-linguistic variation in such factors, and to establish the
degree to which this variation can be used to make valid predictions about sound
systems. However, it is equally clear that such variation alone will not account for all
cross-linguistic differences. For instance, Weinreich et al. (1968:136-137) report that
a four-way contrast among high vowels in Yiddish (J; d, i, d) has been subject to
neutralisation in a range of Yiddish varieties, but the specific patterns of
neutralisation differ from dialect to dialect (e.g. {i, &} > irand {i, &} > I in Southern
Yiddish; {i, 7} > iand {4, G} > uin North Eastern Yiddis; and {i, 4, 1, 4} > iin the
Yiddish variety spoken in North Central Poland and the Northern Ukraine). Since
these varieties are closely related, it is unlikely that they are very different in terms of
contingent factors such as functional load and bias proportion (although this is an
empirical question that should be evaluated based on data from these varieties).
Therefore, these factors alone may not be enough to explain the observed
differences. In such cases, a combination of the current account with accounts based
on the spread of sound change may provide a more comprehensive explanation.
Perhaps Yiddish high vowels (as opposed to high vowels in other languages) are
susceptible to mergers due to low functional load and/or high bias proportion, and the
different partially and fully merged systems are all possible stable states. The

selection of a specific stable state from the available options may then be determined

44



by social factors typically associated with the spread of sound change. | hope that
future research will help to turn such admittedly speculative accounts into more
principled explanations by studying the interaction between structural and social
factors in sound change. The notions of stable states and adaptive landscapes may

well prove to be useful tools in this undertaking.

6. Conclusion

The main goal of this paper was to address certain aspects of sound change
actuation by looking at structural factors traditionally associated with the initiation of
sound change. This was done by exploring the behaviour of sound systems evolving
under multiple pressures through a production-perception feedback loop using
computer simulations. The simulated sound systems showed the same general
behaviour insofar as they all moved towards stable states in an adaptive landscape.
It was shown that the shape of this adaptive landscape is determined by the
interaction between universal pressures which are the same in all languages and
contingent factors which vary cross-linguistically. In the specific case investigated
here, | demonstrated that the final position of /u/ and /i/ along the dimension of
backness varies as a function of bias proportion and functional load in the simulated
systems. The approach exemplified by these simulations can account both for
stability and change: the simulated systems become stable once they reach a peak
in the adaptive landscape, but further changes may result if the factors that
determine the adaptive landscape (e.g. bias proportion and functional load) undergo
changes themselves. | also argued that this simulation framework can be used to
generate substantive predictions about sound change and the shape of sound
systems, which can be matched against corpus data and acoustic measurements.
Moreover, the simulation architecture can be extended in various ways without
changing the general nature of these predictions, which allows researchers to

evaluate the importance of different factors in sound change.
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